Universo matemático es una colección de diez documentales de 24 minutos de duración cada uno de índole matemática, producida en el año 2000 por el programa La aventura del saber, de La 2 de Televisión Española. El autor, guionista y presentador es el matemático Antonio Pérez Sanz, [1] y la realizadora Ana Martínez. La serie documental fue galardonada con el Premio a la divulgación científica en el Festival Internacional Científico de Pekín.
Capítulos
Pitágoras: mucho más que un teorema
Sin duda Pitágoras es el matemático más conocido del gran público. Todo el mundo recuerda su famoso teorema. Pero las Matemáticas le deben a Pitágoras y a los pitagóricos mucho más. Ellos son los que pusieron las primeras piedras científicas no solo de la Geometría sino también de la Aritmética, de la Astronomía y de la Música. Pero antes de Pitágoras
otras dos culturas habían desarrollado unas matemáticas prácticas muy
potentes: los babilonios y los egipcios. Exploraremos sus aportaciones
tanto en el terreno de los sistemas de numeración que empleaban, como de
sus habilidades astronómicas y geométricas. Del sistema sexagesimal de
los babilonios hemos heredado.
Historias de
Si las matemáticas tienen algún número emblemático ese es pi, que
tiene un valor de 3,141592… (se representa por la letra griega minúscula
pi, cuyo símbolo es ). La figura de Ramanujan, un joven indio sin formación universitaria está íntimamente ligada al número . A principio de siglo descubrió nuevas series infinitas para obtener valores aproximados de .
Las mismas que utilizan los grandes ordenadores para obtener millones
de cifras de este familiar y extraño número. Pero el verdadero padre de es un matemático griego de hace 2.300 años, Arquímedes. Él descubrió la famosa fórmula del área del círculo: . Y también el volumen y el área de la esfera. De paso invento el primer método para obtener valores aproximados de aproximando el círculo mediante polígonos de un número creciente de lados. Pero
no sólo aparece en matemáticas cuando se habla de círculos o esferas,
su presencia en relaciones numéricas, en el cálculo de probabilidades y
hasta en estudios estadísticos la confieren una omnipresencia casi
mágica.
Números y cifras: un viaje en el tiempo
Con la llegada del euro volverán los céntimos y unos viejos conocidos
van a adquirir un protagonismo social que no tenían desde hace mucho
tiempo: los números decimales. Unos números que, a pesar de la creencia
popular de que existen desde los comienzos de las matemáticas, sólo
llevan entre nosotros cuatro siglos. Y es que la historia de los números
es más compleja de lo que sospechamos. A lo largo del programa haremos
una excursión por el tiempo para descubrir la historia de las cifras.
Descubriremos las cifras y la forma de utilizarlas de babilonios,
egipcios, griegos y romanos hasta llegar hasta nuestras populares 10
cifras: 1, 2, 3, 4, 5… Pero incluso estas cifras heredadas de los árabes
no siempre han sido la herramienta habitula para calcular. Conoceremos
las aventuras de estos símbolos desde su nacimiento hasta nuestros días,
en que sin duda son los símbolos más universalmente utilizados.
Fermat: el margen más famoso de la historia
A principios de siglo XVII un abogado, aficionado a las matemáticas
va a lanzar una serie de retos, basados en los números más simples, los
enteros, a toda la comunidad matemática. Es Pierre de Fermat. La inspiración para estos retos la encontró en un antiguo libro de matemáticas escrito allá por el siglo III, la Aritmética de Diofanto. En uno de sus márgenes Fermat
va a escribir una frase que se convertirá en una de las más atractivas
de la historia de las matemáticas. Su famoso último teorema: “No existen
soluciones enteras para la ecuación cuando es mayor que 2”. Fermat
afirma que había encontrado la demostración pero por desgracia no le
cabe el margen. Una desgracia que ha traído en jaque a los mejores
matemáticos durante más de 350 años. Haremos un recorrido histórico por
los intentos de demostrar este teorema a lo largo de tres siglos y
presentaremos a Wiles, un matemático inglés que en 1994 pasó a la historia… Por fin alguien había conseguido demostrar el “último teorema de Fermat”.
Gauss: el príncipe de los matemáticos
Principios del siglo XIX. Un joven matemático acaba de resolver un
problema de más de 2.000 años de antigüedad: la construcción con regla y
compás del polígono
regular de 17 lados. Esta va a ser una de las primeras anotaciones que
hará en una vieja libreta de 19 páginas. Al final de su vida las
anotaciones no llegarán a 50, pero sin duda esta libreta será el sueño
de cualquier matemático
del siglo XIX. Las aportaciones que en ella se reflejan contienen el
suficiente material para mantener ocupados a todos los matemáticos del
siglo. Sin embargo la fama de este joven, Gauss le va a venir de los cielos. A finales de 1800 los astrónomos descubren un nuevo objeto celeste. No se trata de un cometa, bien podía ser el planeta buscado tantos años entre Marte y Júpiter. Por desgracia se le pierde la pista. Pero con las pocas observaciones realizadas, Gauss
se pone a la tarea de deducir su órbita y señala el lugar del cielo
hacia donde apuntar los telescopios un año más tarde. Y en efecto allí
aparece Ceres. Las increíbles aportaciones de Gauss no se limitan al mundo de las Matemáticas y de la Astronomía. Junto a Weber va a poner en marcha el primer telégrafo operativo unos años antes que el de Morse. En magnetismo también nos ha dejado su huella: el primer mapa magnético de la Tierra es obra suya. No es inmerecido el título de Príncipe de los Matemáticos, aunque reinó en casi todas las ciencias.
Euler, el genio más prolífico
Euler es un matemático
entrañable y no sólo por sus trabajos. A lo largo del siglo XVIII
ensanchó las fronteras del conocimiento matemático en todos sus campos.
Sus obras completas, Opera Omnia, ocupan más de 87 grandes volúmenes, y
la importancia de sus descubrimientos nos hacen dudar a veces que puedan
ser obra de una sola persona. Aunque Euler no era una persona normal: era un genio. A los 19 años ganó el premio de la Academia de Ciencias de Francia por un trabajo sobre la mejor ubicación de los mástiles de los barcos. Esto no es sorprendente, salvo por el hecho de que Euler nació en Basilea (Suiza) y no había visto un barco en su vida. Volvería a ganar otros once premios de la Academia. Euler recogió el conjunto de todos los retos planteados por Fermat
y dio respuesta satisfactoria a todos menos uno, el último teorema. Hoy
su nombre está asociado a resultados de casi todas las ramas de las matemáticas: análisis, álgebra, teoría de números, series, geometría, astronomía, etc. Lo más sorprendente es que Euler
escribió más de la mitad de su obra completamente ciego realizando sus
cálculos mentalmente. Nada extraño para alguien que era capaz de recitar
la Eneida completa y en latín.
Newton y Leibnitz: sobre hombros de gigantes
Sin duda Newton
es el autor del primer paso de la carrera espacial. Las Leyes
descubiertas por él son las que han permitido al hombre poner un pie en
la Luna o enviar naves a Marte y Venus, explorar los planetas exteriores: Júpiter, Saturno, Neptuno y Urano. Su modelo de telescopio ha permitido ver más lejos en cielo. Sin duda los astrónomos le deben mucho a Newton. Pero los matemáticos y de paso el resto de los científicos le deben tanto o más. Él junto a Leibniz, aunque sería mejor decir al mismo tiempo que Leibniz, son los descubridores de la más potente y maravillosa herramienta matemática: el Cálculo. Newton tuvo en vida un prestigio y un reconocimiento social aún mayor que el que pudo tener Einstein en nuestro siglo. Como los reyes y muy pocos nobles fue enterrado en la abadía de Westminster. Leibniz murió sólo y abandonado por todos. A su entierro en Hannover
sólo asistió su criado. Hoy los dos comparten por igual la gloria de
ser los padres de las dos herramientas más potentes del universo
matemático: el cálculo diferencial y el cálculo integral.
El instrumento ideal para entender y explicar el funcionamiento del
mundo real, desde las cosas más próximas hasta el rincón más alejado del
universo.
Las Matemáticas en la Revolución Francesa
En 1791, haciendo un alto en sus disputas políticas, la Asamblea Nacional Francesa define lo que con los años se convertirá en la medida de longitud universal: el metro. La diezmillonésima parte del cuadrante del meridiano terrestre. Gracias a los matemáticos franceses hoy compramos en kilos y viajamos kilómetros. Una pléyade de notables matemáticos como nunca antes habían convivido en Francia, va a vivir de forma intensa los acontecimientos de la Revolución Francesa: Joseph Louis Lagrange, Gaspard Monge, Pierre Simon Laplace, Adrien Marie Legendre, y el marqués de Condorcet, van a llevar a la matemática francesa a su más alta cima. Ellos van a poner los fundamentos científicos del Análisis, del cálculo de probabilidades, de la Geometría descriptiva y de la Astronomía
moderna. Pero van a hacer algo más: van a crear el modelo de la moderna
enseñanza de las matemáticas superiores, un modelo que pervivirá más de
dos siglos. 14 de julio, fiesta nacional francesa. Los franceses
celebran el nacimiento del Estado moderno. El resto del mundo deberíamos
celebrar con ellos algo quizás más importante: uno de los momentos más
brillantes de la Ciencia Moderna.
Mujeres matemáticas
¿Entienden las Matemáticas de sexos? ¿Son los grandes misterios de las Matemáticas algo exclusivo de los hombres? ¿Por qué, a lo largo de la historia, hay tan pocas mujeres
que hayan destacado en una disciplina científica tan antigua? Aunque
parece que en la actualidad existe un equilibrio entre el número de
chicos y de chicas que estudian matemáticas, esto es un fenómeno
relativamente reciente. Desde luego hace cuarenta años esto no ocurría.
Para descubrir la presencia de las mujeres en el Universo de las
Matemáticas haremos un recorrido histórico que comienza con el
nacimiento de las matemáticas, con Pitágoras y su mujer Teano, y que continua con Hypatia de Alejandría, con Madame de Chatelet en Francia y con María Caetana Agnesi en Bolonia en el siglo XVIII. Incluso en el siglo XIX, Sophie Germain tuvo que adoptar la identidad de un antiguo alumno de la Escuela Politécnica de París, Monsieur Leblanc,
para conseguir los materiales y problemas y para presentar sus propios
resultados y trabajos. Sus trabajos sorprendieron a matemáticos de la
altura de Lagrange y de Gauss. Ya a finales del siglo Sofia Kovalévskaya
sufrió la marginación de la mujer en el mundo académico a pesar de ser
uno de los mejores cerebros de la época. Sólo a las puertas del siglo
XIX, una mujer Marie Curie
va a realizar uno de los descubrimientos más importantes de la historia
de la humanidad, un descubrimiento que va a cambiar la vida de ser
humano en el siglo XX en muchos aspectos: la radiactividad.
Y consiguió algo quizás tan importante: por primera vez en la historia
la humanidad los círculos científicos abrían sus puertas de par en par a
una mujer. Y con ella a tantas tan injustamente ignoradas durante
siglos.
Orden y caos. La búsqueda de un sueño
Cosmos y Caos: orden y desorden. Eso es lo que significan esas dos palabras griegas. La historia de la ciencia se reduce a esto: una lucha eterna por descubrir el funcionamiento de la Naturaleza, un intento interminable de poner orden en el caos. Y las matemáticas van a ser una herramienta imprescindible. Asistiremos a las batallas matemáticas más importantes en esta eterna guerra. Desde Pitágoras buscando en los números la armonía del Universo, hasta Platón asociando a los poliedros regulares el equilibrio universal. Nos detendremos en una batalla fundamental: la lucha de Copérnico, de Galileo y de Kepler por poner orden en el movimiento caótico de los planetas. Y seremos testigos del gran triunfo de Newton descubriendo el sistema del mundo, poniendo al mismo nivel a la manzana y a la Luna. Desde que Newton publicara en 1687 sus Principia Mathematica
una idea va a impregnar hasta el último rincón de todas las disciplinas
científicas: La Naturaleza tiene sus leyes matemáticas y el ser humano
puede encontrarlas. Pero por desgracia la Naturaleza guarda siempre
algún secreto. Quién puede predecir cuándo y dónde se producirá un
torbellino en una corriente de agua, cómo bailan las llamas de una
hoguera, qué volutas va describir el humo de un cigarro, cuándo y dónde
se formará una tormenta, dónde descargará un rayo, qué figura extraña dibujará en el cielo. Decididamente son fenómenos al otro lado de la frontera del caos. Pero las Matemáticas ya han puesto su avanzadilla en esa otra orilla: la teoría de Caos y la Geometría fractal. Caos y orden, orden y caos. ¿No serán en el fondo las dos caras de una misma y maravillosa moneda: la Naturaleza?
Direcciones de interés:
- La aventura del saber Universo Matemático en RTVE a la carta